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Collision statistics of hard-core systems �thermal and dissipative� is investigated through the velocity-
correlation distributions after n collisions of a tagged hard-core particle: These quantities provide information
on the velocity correlations for a given number of collisions. We obtain exact results for arbitrary dimension for
the velocity-correlation distribution after the first collision as well as for the velocity-correlation function after
an infinite number of collisions. For Gaussian velocity distributions, we show that the decay of the first-
collision velocity-correlation distribution for negative argument is always exponential in any dimension; the
decay rate is then a function of the mass and the coefficient of restitution. For granular gases, where deviations
from Gaussian are relevant, expressions including Sonine corrections are also derived for the velocity-
correlation distribution and a comparison with a direct simulation Monte Carlo �DSMC� shows accurate
agreement with theoretical results. We emphasize that these quantities can be easily obtained in simulations and
most likely also in experiments: therefore they could be an efficient probe of the local environment and of the
degree of inelasticity of the collisions.
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I. INTRODUCTION

The dynamics of hard-core particles consists of succes-
sive binary collisions. For atomic systems, the equilibrium
state can be reached, and is characterized by velocity distri-
butions which are purely Gaussian. Conversely, in the pres-
ence of dissipation, e.g., for granular particles, no equilib-
rium exists, but when an external source of energy is present
the system reaches a steady state whose properties can be
compared to the equilibrium state of atomic systems �1�. At
low to intermediate densities, spatial correlations are not re-
sponsible for non-Gaussian deviations �2�.

The short-time dynamics is usually analyzed by means of
the velocity autocorrelation function. This quantity provides
an average of the scalar product of the velocity at time 0 with
the velocity at time t. For thermal systems at low density, the
correlation function is generally not known exactly �with the
only exception being the velocity correlation for one-
dimensional systems �3��. Nevertheless, the characteristic
time of the velocity correlation function corresponds to the
time needed for the system to lose memory of the initial
configuration of the velocities. Some progress has been made
recently by investigating the collision statistics: Visco et al.
�4,5� showed that the free flight time distribution is not ex-
ponential, even in the low-density limit �such a behavior was
observed in molecular simulation of hard spheres some years
ago �6��. Deviations from the Poisson law of the number of
collisions can be captured in the framework of the Boltz-
mann equation and agree with molecular simulation results.

We introduce a quantity here by focusing on collision
events irrespective of the time when individual collisions
occur. We consider the scalar product between the velocity
before a given collision and the velocity after n collisions.
Note that this quantity is distinct from the distribution of
velocities for a hard sphere on collision, which characterizes
the distribution of the relative velocity of colliding spheres,
for which Lue �7� obtained exact results in three, four, and

five dimensions. The information obtained is not only the
average of the scalar product, but the full distribution of the
scalar product between the velocity before and after a se-
quence of n collisions. When n=1, this corresponds to the
probability of the scalar product between the precollisional
and post-collisional velocities during a collision; it is worth
noting that the first moment of the distribution does not cor-
respond to the velocity correlation function at the mean col-
lision time: indeed, the probability distribution is built for
collisions occurring at different collision times, whereas the
velocity correlation function corresponds to the scalar prod-
uct of the velocities at a given time.

As the number of collisions increases, the correlations
between velocities decrease and the distribution evolves pro-
gressively to the limit where the velocities are uncorrelated.
The paper is organized as follows. In Sec. II, we obtain the
probability distributions in the limit of an infinite number of
collisions, i.e., when the velocities are completely uncorre-
lated, in any spatial dimension. In Sec. III, we derive the
first-collision velocity distribution in all dimensions. The
corrections induced by the non-Gaussian behavior of granu-
lar systems are examined in Sec. IV, and analytical results
are compared to DSMC results. Velocity-correlation distribu-
tions at the second and higher collisions are obtained in Sec.
V and the approach to the limit of uncorrelated velocities is
analyzed.

The central quantity of this study, the velocity-correlation
distribution Pn�z� at the nth collision is defined as

Pn�z� = ���z − v · v
n
*�� , �1�

where the brackets denote a statistical average in a given
steady state, v denotes the precollisional velocity of a tagged
particle before the first collision, and v

n
* the postcollisional

velocity of the same particle after the nth collision. We only
consider the case of homogeneous systems.
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II. VELOCITY-CORRELATION DISTRIBUTION
IN THE INFINITE COLLISION LIMIT

We first consider the situation where the number of colli-
sions is very large, i.e., the velocity before the first collision
and the velocity after a large number of collisions has be-
come uncorrelated. The probability distribution of the scalar
product P��z=v ·v*

�
� is then given by

P��z� =� � dvdv
�
* f�v�f�v

�
*���z − v · v

�
*� . �2�

Let us consider the generating function P̃��k�
=�dkeikzP��z�. One has

P̃�
�d��k� =� � dvdv

�
* f�v�f�v

�
*�eikv·v

�
*
. �3�

We assume that the velocity distribution can be factorized as
f�v�=	�=1

d f�v��, where � is an index running over all Carte-
sian components of the velocity and d the space dimension.
For thermal isotropic systems, the velocity distribution f�v�
is always Gaussian

f�v� =
 M

2�T
e−Mv2/2T, �4�

where M and T are the mass and the temperature of the
particle, respectively. For granular systems, velocity distribu-
tions are not purely Gaussian. For thermal velocities, their
deviations from Gaussian can be well captured systemati-
cally by introducing perturbative Sonine expansions. We
show in Sec. V how the velocity-correlation functions are
perturbatively modified by the insertion of Sonine correc-
tions. Here, however, for the sake of simplicity, we restrict
ourselves to the approximation of Gaussian velocity distribu-
tion for granular gases, as done by many authors �8–10�.

Since the Cartesian components of the velocity are then
independent random variables, the generating function

P̃�
�d��k� is simply the product of the generating functions of

each Cartesian component

P̃�
�d��k� = „P̃�

�1��k�…d, �5�

where P�
�1�˜ �k� is the generating function for the one-

dimensional problem.
The distribution P�

�1��z� can be obtained from Eq. �2�,
which gives

P�
�1��z� =� dv

�v�
f�z/v�f�v� . �6�

It is worth noting that P�
�1� is the Mellin convolution of the

two velocity distributions as this distribution is that of the
product of two independent random variables.

P�
�1��z� can be explicitly obtained and is then equal to

P�
�1��z� =

MK0� �z�M
T


�T

, �7�

where K0�z� is the modified Bessel function of second kind.
The basic property of P�

�1� is that the distribution is symmet-
ric because the velocities are uncorrelated. The behavior of
P�

�1� is intriguing at small values of z, as one observes a
logarithmic divergence at z=0. This means that there is an
overpopulated density of very small scalar products even
though the velocity distribution remains finite for very
small velocities. For large velocities, P�

�1� decays as
exp�−�z�M /T� /
z for large values of z, i.e., less rapidly than
the original velocity distribution which has a Gaussian decay.

In two and more dimensions, the velocity-correlation dis-
tribution can be obtained by noting that the Fourier transform
of Eq. �7� �or integrating Eq. �3��, leads to

P̃�
�1��k� =

1

1 + k2

. �8�

By inserting Eq. �8� in Eq. �5�, the generating function

P̃�
�d��k� in d dimensions is then

P̃�
�d��k� = �1 + k2�−d/2. �9�

The inverse Fourier transform can be calculated in any di-
mension: in 2D, the Fourier transform has a Lorentz profile,
which gives in real space

P�
�2��z� =

M exp�− �z�M/T�
2T

�10�

and, in three dimensions,

P�
�3��z� = z

MK1� �z�M
T


�T

. �11�

In two and three dimensions, the probability distribution is
no longer singular at the origin. However, there exists a
nonanalytic behavior which is a cusp in 2D and a cusp in the
derivative in 3D. For completeness, the solution in odd di-
mensions; P�

�d��z� is given by

P�
�d��z� =
 2

�
�z��d−1�/2 �d − 2�!

2�d−3�/2��d − 3�/2�!
K��d − 1�/2, �z�� ,

�12�

where K��d−1� /2, �z�� is the modified Bessel function of sec-
ond kind of order �d−1� /2.

III. FIRST-COLLISION VELOCITY-CORRELATION
DISTRIBUTION

In order to have tractable expressions for the first-
collision velocity-correlation distribution P1�z�, we assume
that “molecular chaos” is valid, i.e., that there are no corre-
lations between the particles before collision. The joint ve-
locity distribution of the tagged particle and the bath par-
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ticles is simply the product of the individual velocity
distributions. Moreover, it is necessary to account for the rate
of collisions which depends on the relative velocity at the
point of impact as well as all possible collisions by summing
over the locations of the impact on the sphere. P1�z� is then
given by

P1�z� = C�
S
� � dndudv��v − u� · n�f�v�

�fB�u���z − v · v*� , �13�

where f�v� and fB�u� are, respectively, the velocity distribu-
tions of the tagged and bath particles. The integral with the
subscript S corresponds to the integration over the unit
sphere with the restriction �u−v�·n�0, where n is a unit
vector along the axis joining the two centers of particles �this
imposes that the particles are approaching each other before
colliding�. C is the normalization constant such that
�−�

� dzP1�z�=1.
The postcollisional velocity v* is given by the collision

rule which is

v* = v + m
1 + �

m + M
��u − v� ·n�n , �14�

where M and m are, respectively, the mass of the tagged and
of the bath particles. � is the normal restitution coefficient
lying between 0 and 1. For convenience �3,11,12�, we intro-
duce �� such that

1 + ��

2
= m

1 + �

M + m
. �15�

A. One dimension

In one dimension, the integral over angles is replaced by
counting the right and left collisions. Therefore, Eq. �13�
becomes

P1
�1��z� = C� � dudv�u − v�f�v�fB�u���z − vv*� . �16�

For granular gases when ��1, even if the velocity distribu-
tions of the tagged particle and of the bath particle are
Gaussian �13,14� �or close to the Gaussian profile �15��, the
granular temperatures of these two particle species are al-
ways different. Let us denote by 	 the ratio between the bath
and the tagged particle temperatures. The velocity distribu-
tion of the two species read

f�v� =
 M

2�T
e−Mv2/2	T �17�

and

fB�v� =
 m

2�T
e−mv2/2T. �18�

It is necessary to distinguish the case z�0, where the distri-
bution P1

�1��z� is given by

P1
�1��z� =

4C

�1 + ���2 � dv�1 −
z

v2 f�v�

� fB�v�1 − ���
1 + ��

−
2z

�1 + ���v
 , �19�

from the case z
0, where P1
�1��z� is equal to

P1
�1��z� =

4C

�1 + ���2��
0


z

dv − �

z

+� �� z

v2 − 1 f�v�

� fB�v�1 − ���
1 + ��

−
2z

�1 + ���v
 . �20�

Explicit integration over the velocity can be performed
and more details of the calculation are given in Appendix A.
Let us introduce

a =
M

	T
+

m

T
�1 − ��

1 + ��
2

, �21�

b =
m

T
� 2

1 + ��
2

, �22�

c =
2m

T

1 − ��

�1 + ���2 . �23�

The first-collision velocity-correlation distribution P1
�1��z�

then reads for z�0

P1
�1��z� = P1

�1��0�e�ab+c�z �24�

and for z
0

P1
�1��z� = P1

�1��0�ecz�a − b

a + b
e−abz erf�a − b


2

z

+ eabz erfc�a + b

2


z� , �25�

where P1
�1��0� is given by

P1
�1��0� =

�a + b��a2b2 − c2�
2ab
a2 + b2 − 2c

. �26�

Note that P1
�1��z� is always asymmetric, contrary to an

uncorrelated velocity distribution; this results from the exis-
tence of correlations between precollisional and post-
collisional velocities of a particle. Secondly, P1

�1��z� is finite
when z goes to 0, which is not the case for P�

�1��z�.
To simplify the above expressions �24� and �25� and to

allow us to discuss the physical results, we now need to
specify the temperature ratio 	. For inelastic particles in a
polydisperse granular bath, 	 is in general a complicated
function of parameters such as the bath composition, the
heating mechanism and the coefficient of restitution. How-
ever, three interesting limiting cases provide a simple expres-
sion of the temperature ratio.

�i� Monodisperse systems, for which 	=1 �in a Gaussian
approximation�.

�ii� A mixture of granular gases in the limit of infinite
dilution. Martin and Piasecki �13� showed that the velocity
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distribution of an inelastic tracer in an elastic bath remains
Gaussian with a granular temperature of the tracer given by
the relation Teff=	T �equipartition does not hold�; this ratio 	
is given by

	 =
M

m

1 + ��

3 − ��
. �27�

�iii� Thermalized systems of elastic particles ��=1�, for
which P1

�1��z� provides nontrivial information about the
short-time dynamics, even for equilibrium systems.

In the first case �M =m and 	=1�, ��=�. This gives for
the first-collision velocity-correlation distribution, for z�0

P1
�1��z� =

M

T

2 + 
2�1 + �2�

2�1 + ��
1 + �2
e2/�1 + ��2�
2�1+�2�+1−��Mz/T

�28�

and, for z
0,

P1
�1��z� =

M

T

e�2�1−��/�1 + ��2��Mz/T�

2�1 + ��
1 + �2 ��2 − 
2�1 + �2��

�e−2/�1 + ��2�
2�1+�2��Mz/T

�erf�
2 − 
�1 + �2�
1 + �


Mz

T


+ �2 + 
2�1 + �2��e2/�1 + ��2�
2�1+�2��Mz/T

�erfc�
2 + 
�1 + �2�
1 + �


Mz

T
� . �29�

The decay of P1
�1��z� also depends on both the temperature

and the coefficient of restitution �.
In the second case �granular tracer in a thermalized bath�,

substituting Eq. �27� in Eqs. �21� and �22�, one obtains a
=b=
m

T
2

1+��
, which gives a simple expression for P1

�1��z�. For
z�0

P1
�1��z� =

m

T

3 − ��

�1 + ���3/2e��3−���/�1 + ���2��2mz/T� �30�

and for z
0

P1
�1��z� =

m

T

3 − ��

�1 + ���3/2e�2m/T���3−���/�1 + ���2�z

�erfc� 2

1 + ��

2mz

T
 . �31�

In order to show that the local environment influences the
first-collision velocity-correlation distribution, we reexpress
P1

�1��z� in terms of the temperature of the tracer 	T. Substi-
tuting Eq. �27� in Eqs. �30� and �31�, one obtains for z
0,
P1

�1��z�= M
	T

1

1+��

e�1/�1+�����2Mz/	T�. A comparison with Eq. �28�
shows that P1

�1��z� is sensitive to the heating procedure, the
temperature of the tracer particle being the same in both
cases.

Finally, for elastic hard particles ��=1�, equipartition
holds, 	=1, and therefore Eqs. �21�–�23� become a=b= �M
+m� / �2
mT� and c= �M2−m2� / �4mT�, and P1

�1��z� reads for
z�0

P1
�1��z� =

M

2T

1 +

M

m
e�M�M+m�/2mT�z �32�

and for z
0

P1
�1��z� =

M

2T

1 +

M

m
e�M�M+m�/2mT�z erfc��M + m�
 z

2mT
 .

�33�

Figure 1 displays P1
�1��z� as a function of z for different

values of the coefficient of restitution �=0,0.2,0.4,0.6,
0.8,1 for a monodisperse system �Eqs. �28� and �29��. For
elastic hard particles, P1

�1��z� is plotted in Fig. 2 as a function
of z for different values of the mass ratio m /M =1,1 /2,
1 /5,1 /10.

Averaged quantities can be deduced from the first-
collision distributions: The integral of P1

�1��z� over z�0 cor-

-3 -2 -1 0 1 2 3 4
z

0.01

0.1

1

P 1(1
) (z

)

FIG. 1. �Color online� Log-linear plot of P1
�1��z� versus z �M /T

is set to 1� �Eqs. �28� and �29��: Left, from top to bottom, the
coefficient of restitution �=0,0.2,0.4,0.6,0.8,1.

-2 -1 0 1 2 3
z

0.01

0.1

1

P 1(1
) (z

)

FIG. 2. �Color online� Log-linear plot of P1
�1��z� versus z, for

elastic hard spheres �Eqs. �32� and �33��. The mass ratios are m
M

=1, 1
2 , 1

5 , 1
10 �on the left side, from top to bottom�.
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responds to the fraction of events in which the particle ve-
locity after collision is opposite to the precollisional velocity.
Integrating Eq. �24� over all negative values of z leads to

IP1
�1��z�0� =

�M2 + 
	�m + M���M2 − 
	�M − m���
�1 + ��M2


mM + 	m2
�34�

with

M2 = 
�1 + ��2mM + 	�M − m��2. �35�

For elastic particles �i.e., �=1�, the fraction of collisions
in which the post-collisional velocity has a direction opposite
to that of the precollisional velocity becomes very simple
because the equipartition property is satisfied �	=1�:

IP1
�1��z�0� =
 m

m + M
. �36�

Thus, for a monodisperse system, the probability of having a
velocity inverted after a collision is higher than the probabil-
ity of having a velocity whose direction is not changed by
the collision �in one dimension �1D��.

For inelastic particles ���1�, Fig. 3 shows that IP1
�1��z�0�

increases with the mass ratio m /M for all values of �. For
the sake of simplicity, 	 is assumed to be equal to 1. Atten-
tion must be paid to the case �=0: in this case, the limit of
IP1

�1��z�0� when m /M→� is equal to 1 /2 whereas IP1
�1��z�0�

tends to 1 when m /M→� if �
0. This discontinuity is
clearly apparent in Fig. 3.

B. Two dimensions

The first-collision velocity-correlation distribution can
also be obtained analytically in two dimensions and above.
Indeed the calculation can be performed following a method
used in the one-dimensional case. Let us note that the scalar
product of the precollisional and post-collisional velocities
v ·v* can be expressed in an orthonormal basis associated
with the collision as

v · v* = vnvn
* + vtvt

*, �37�

where vn and vt denote the normal and tangential compo-
nents of the velocity. The post-collisional quantities on the
rhs of Eq. �37� can be eliminated by using Eq. �14�:

v · v* = vt
2 +

1 − ��

2
vn

2 +
1 + ��

2
vnun, �38�

where un is the normal component of the velocity of the bath
particle.

Since the normal and tangent components of the tracer
particle are independent random variables, the integrals can
be performed successively over un and vn as in the one-
dimensional case, provided that z is shifted to z−vt

2. It is
worth noting that the final integration over angular variables
�n� is trivial, since the integrand does not depend on n.

For z�0, the decay of P1
�2��z� remains exponential and is

equal to

P1
�2��z� = P1

�1��0�
e�ab+c�z


1 + 2�ab + c�
	T

M

. �39�

For z
0, P1
�2��z� has two contributions

P1
�2��z� =

P1
�1��0�e�ab+c�z


1 + 2�ab + c�
	T

M

erfc�
z� M

2	T
+ �ab + c��

+ P1
�1��0�
 M

2�	T
ecz�

0

z

dy
1

y

e−�M/2	T+c�y

��eab�z−y� erfc� �a + b�
�z − y�

2

�
+

a − b

a + b
e−ab�z−y� erf� �a − b�
�z − y�


2
�� . �40�

Note that P1
�2��z� has an exponential decay when the scalar

product of velocities is negative �i.e., z�0�, with the same
coefficient �ab+c� as we obtained in one dimension. The
integration over vt only changes the normalization constant
compared to the one-dimensional case. Conversely, for posi-
tive z, the shape of P1

�2��z� is more complicated than in one
dimension. As will be seen in the next section, the exponen-
tial decay of P1

�2��z� is universal since this result is the same
in any dimension and for different heating mechanisms
�through the 	 dependence�. The fraction of events in which
the scalar product between the precollisional and post-
collisional velocities is negative is then given by

IP1
�2��z�0� =

�a + b��ab − c�
2ab
a2 + b2 − 2c

1


1 + 2�ab + c�
	T

M

, �41�

where a, b, and c are given by Eqs. �21�–�23�.
For instance, for elastic hard particles, the fraction of

events in which the scalar product is negative after a colli-
sion is given by

FIG. 3. �Color online� IP1
�1��z�0� versus mass ratio m /M for dif-

ferent values of the coefficient of restitution �: from top to bottom
�=0.99,0.8,0.5,0.
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IP1
�2��z�0� =
 m

m + M

 m

M + 2m
. �42�

Therefore, for a monodisperse system �m=M�, IP1
�2��z�0�

=1 /
6�0.40824¯ in 2D whereas IP1
�1��z�0�=1 /
2

�0.707¯ in 1D. In other words, in 2D, most collisions do
not change the scalar product sign, whereas the converse is
observed in 1D.

C. Three dimensions

In three dimensions, the first-collision velocity-correlation
distribution can be similarly derived. The scalar product be-
tween the precollisional and post-collisional velocities can be
expressed as

v · v* = vnvn
* + vtvt

* + vzvz
* =

1 − ��

2
vn

2 +
1 + ��

2
vnun + vt

2 + vz
2,

�43�

where un is the normal component of the velocity of the bath
particle. P1

�3��z� is the probability distributions associated

with the sum of two independent random variables. The first
is the 1D collision term 1−��

2 vn
2+ 1+��

2 vnun and the second is
the sum v1t

2 +v1z
2 , which is a �2

2-distributed variable and, as a
result, an exponentially distributed variable

�2
2�y� =

M

2	T
e−My/2	T. �44�

P1
�3��z� can be expressed as the convolution of the two

probability distributions of these variables. As the distribu-
tions are normalized, the distribution obtained via the convo-
lution is normalized. For z�0,

P1
�3��z� = P1

�1��0�
M

2	T
�

0

+�

dye−My/2	Te�ab+c��z−y�

= P1
�1��0�

e�ab+c�z

1 + 2�ab + c�
	T

M

�45�

and for z
0, P1
�3��z� is the sum of several contributions

P1
�3��z� = P1

�1��0�� M

	T

e�ab+c�z erfc� �a + b�
z

2

�
M

	T
+ 2�ab + c�

+
M

	T

�b − a�e�−ab+c�z erf� �a − b�
z

2

�
�a + b��−

M

	T
+ 2ab − 2c

+
M

	T

4abe−Mz/2	T
a2 + b2 − 2c −
M

	T
erf�
z
a2 + b2 − 2c −

M

	T

2

�
�a + b��−

M

	T
+ 2ab − 2c� M

	T
+ 2�ab + c� � , �46�

where a, b, and c are given by Eqs. �21�–�23� and 	 is the
temperature ratio.

As already noted, P1
�3��z� has the same z dependence as in

1D and 2D when z�0. The influence of the dimension is in
the amplitude factor which decreases when the dimension
increases, the temperature and other microscopic parameters
�masses, coefficient of restitution� being kept constant. From
Eq. �45�, the fraction of events with a negative scalar product
of velocities can be exactly obtained; moreover, a general
formula can be obtained in any dimension

IP1
�d��z�0� =

�a + b��ab − c�
2ab
a2 + b2 − 2c

�1 + 2�ab + c�
	T

M
�1−d�/2

.

�47�

IV. INFLUENCE OF THE SONINE CORRECTIONS
OF THE VELOCITY DISTRIBUTION ON P1

(1)(z)

For granular gases, whose kinetic properties are well de-
scribed by the Boltzmann equation, the velocity distribution
is no longer a Gaussian. The deviations from Gaussian be-
havior can be captured by Sonine corrections. It is then pos-
sible to quantify the influence of these corrections on the
distribution P1�z� �since the definition of the latter does not
depend on the details of the velocity distribution function�.

The nonlinear Boltzmann equation can be solved numeri-
cally by using a direct simulation Monte Carlo �DSMC�
method �16,17�. We have performed DSMC simulations for
monodisperse homogeneous systems excited through a sto-
chastic thermostat. This allowed us to compare the distribu-
tion P1�z� obtained by simulation with the theoretical predic-
tion calculated with a Sonine correction.
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The calculation is similar to that of Eq. �19�, but in the
case studied here we no longer consider a tracer particle, so
that f = fB. Calculations were performed by considering only
the first correction. This gives

f�v� = � M

2�T
d/2

e−Mv2/2T�1 + a2���S2�Mv2

2T
� , �48�

where S2 is the second Sonine polynomial expressed in the
appropriate dimension. The value of a2��� is taken as equal
to its usual approximation for the stochastic thermostat
�17,18�. As the form of the perturbation introduced is simply
a multiplicative polynomial, the expressions obtained for the
1D distribution P1

�1��z� are analytical. As the result for z
0
is lengthy, we will only show that obtained for z�0, which
is

P1
�1��z� =

e�Mz/T��2�1−�+
2
1+�2�/�1 + ��2�

64
2��1 + � + �2 + �3�3 �Q��� + a2���

��Q0��� +
Mz

T
Q1��� +

M2z2

T2 Q2���� , �49�

where the Qi���’s are simple functions of � given in Appen-
dix B.

Since the 2D case is closer to possible experimental sys-
tems, we have also included Sonine corrections to the veloc-
ity distribution for calculating the velocity-correlation distri-
bution P1

�2��z�, but the lengthy expressions are not shown
here. Figure 4 displays the analytical result �P1

�2��z� with So-
nine corrections� and the DSMC results for two values of the
coefficient of restitution: �=0.2,0.5. Even for the more in-
elastic case, the agreement between analytical results and
DSMC is remarkable.

V. SECOND AND HIGHER-COLLISION
VELOCITY-CORRELATION DISTRIBUTIONS

The collision statistics can be followed beyond the first-
collision distribution. Formally, the second-collision velo-
city-correlation distribution P2�z� is given by the relation

P2�z� = C2�
S1

�
S2

� � dn1dn2du1du2dv��u1 − v1� · n1�

���u2 − v1
*� · n2�f�v�fB�u1�fB�u2���z − v · v2

*� ,

�50�
where v1 denotes the precollisional velocity of the tagged
particle for the first collision, v

1
* the velocity after the first

collision and v
2
* the post-collisional velocity after the second

collision. u1 and u2 correspond to the velocities of the bath
particles for the first and second collisions, respectively. �Re-
call that f�v� and fB�v� are the velocity distributions of the
tagged and bath particles, respectively.� Obviously, v2=v

1
*,

and by using Eq. �14�, the collision rule gives for the two
collisions

v1
* = v1 +

1 + ��

2
��u1 − v1� · n1�n1, �51�

v2
* = v1

* +
1 + ��

2
��u2 − v2� · n2�n2. �52�

Finally, C2 is the normalization constant ensuring that

�
−�

�

dzP2
�1��z� = 1. �53�

In a similar way, it is possible to write down closed equations
for Pn�z�. However, whereas tractable expressions have been
obtained in any dimension for P1�z�, the calculation in-
creases drastically in complexity for obtaining the distribu-
tion at the second collision. In the restricted case where ��
=1 in one dimension, it is nonetheless possible to obtain the
exact expression of P2

�1��z� �details of the calculation are
given in Appendix C�. Thus, for z�0,

P2
�1��z� = C2��� e
2abz

a
+

eb
a2+b2z

b
 +

�1 + b2z�
b

� �
0

�

dv
e−a2v2/2−b2z2/2v2

v �erfc� bv

2

 + erf� bz

2v

��
�54�

and for z
0,

-3 -2 -1 0 1 2 3
z

0.001

0.01

0.1

1

P n(z
)

FIG. 5. �Color online� nth collision velocity-correlation distri-
butions Pn

�1��z� versus z for various values of n: n=1,2 , . . . ,10 �D
=1�.

-6 -4 -2 0 2 4 6 8 10
z

0

0.1

0.2

0.3

0.4

0.5
P 1(z

)

FIG. 4. �Color online� DSMC results �symbols� and theoretical
predictions with the first Sonine correction �lines� for P1

�2��z� versus
z=mv1v1� /T in 2D. Diamonds and circles correspond to the simula-
tions for �=0.2,0.5, respectively.
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P2
�1��z� = C2��
2�

b2 � e−
2abz

a
erf� �
2a − 2b�
z

2
�

+
e
2abz

a
erfc� �
2a + 2b�
z

2


−
e−b
a2+b2z

b
erfc� �− b + 
a2 + b2�
z


2


+
eb
a2+b2z

b
erfc� �b + 
a2 + b2�
z


2


+ 2

2��1 + b2z�

b3 �

z

�

dv
e−a2v2/2−b2z2/2v2

v

� �erfc� bv

2

 + erf� bz

2v

�� , �55�

where C2� is determined from Eq. �53� and, with the help of
Eqs. �21� and �22�, a=
 M

	T and b=
m
T . From Eqs. �54� and

�55�, one obtains the small-z expansion for P2
�1��z�:

P2
�1��z� � K0�
ab

	

�z�
T
 . �56�

Therefore, the second-collision velocity-correlation distribu-
tion shows a divergence at z=0, reminiscent of the diver-
gence of P�

�1��z�, when the two velocities are completely un-
correlated. However, note that the coefficient of the modified
Bessel function of the second kind K0�z� is ab instead of a2

for P�
�1��z�. To continue the analysis of the velocity-

correlation distributions in general, we have performed
DSMC in various situations, and monitored several Pn

�1��z�’s.
Figure 5 shows Pn

�1��z� as a function of z for n=1,
2 , . . . ,10. Note that for n�3, the distribution practically
reaches the asymptotic value, namely, P��z�. A simple physi-
cal interpretation is that after three collisions the systems
loses memory of its initial velocity configuration, and the
correlation between the initial velocity and the velocity after
n collisions vanishes when n is larger than 3. Similar plots

are displayed in Figs. 6 and 7 for Pn
�2��z� and Pn

�3��z�, respec-
tively. Interestingly, the convergence to the asymptotic func-
tion P��z� becomes slower when the space dimension in-
creases.

VI. CONCLUSION

We have introduced velocity-correlation distributions that
capture the early stages of the dynamics. These distributions
are easily accessible in computer simulations. This should
also be the case in experiments: provided that the framing
rate is higher than the mean collision frequency, the prob-
ability that two collisions occur during a time step is small
and the collision history could be monitored accurately. This
would allow the measurement of the first-collision velocity-
correlation distributions.

These nontrivial quantities have an interesting character-
istic which is an exponential decay for negative scalar prod-
uct of velocities, when the velocity distribution is Gaussian
�corrections can be easily calculated for granular gases when
the velocity distribution is no longer Gaussian�. This expo-
nential decay shows a very simple dependency on the system
characteristics: particle mass, temperature, and dissipation.
We therefore expect that these distributions could be efficient
for probing the environment of a particle in granular gases.
Since they give a direct access to a fundamental quantity
related to one event, we believe they would be most appro-
priate to compare theory and experiments in granular sys-
tems.
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APPENDIX A: 1D FIRST COLLISIONS

We have the following integrals for z�0:

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
z

0.01

1

P n(z
)

FIG. 6. �Color online� nth collision velocity-correlation distri-
butions Pn

�2��z� versus z for various values of n: n=1,2 , . . . ,10 �D
=2�.

-0.9-0.6-0.3 0 0.3 0.6 0.9 1.2 1.5 1.8
z

0.001

0.01

0.1

1

P n(z
)

FIG. 7. �Color online� nth collision velocity-correlation distri-
butions Pn

�3��z� versus z for various values of n: n=1,2 , . . . ,10 �D
=3�.
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�
0

+�

dv�1 −
z

v2exp�−
a2v2

2
−

b2z2

2v2  =
a + b

ab

�

2
eabz

�A1�

and, for z
0,

�
0


z

dv� z

v2 − 1exp�−
a2v2

2
−

b2z2

2v2 
=
�

2

1

2ab��a − b�e−abz�erf�a − b

2


z + 1�
+ �a + b�eabz erfc�a + b


2

z� �A2�

and

�

z

�

dv�1 −
z

v2exp�a2v2

2
−

b2z2

2v2 
=
�

2

1

2ab��a − b�e−abz�erf�a − b

2


z − 1�
+ �a + b�eabz erfc�a + b


2

z� , �A3�

which gives for z�0

P1
�1��z� =

4C

�1 + ���2

a + b

ab
e�ab+c�z �A4�

and for z
0

P1
�1��z� =

4C

�1 + ���2
�

2
ecz�a − b

ab
e−abz�erf�a − b


2

z�

+
a + b

ab
eabz erfc�a + b


2

z� . �A5�

The constant C can be obtained by calculating the normal-
ization condition �dzP1�z�=1, which gives

C =
�1 + ���2

4

a2b2 − c2


2��a2 + b2 − 2c�
. �A6�

APPENDIX B: SONINE CORRECTION TO
THE 1D CALCULATION

For z�0, one finds

P1
�1��z� = e�2�1−��/�1 + ��2��Mz/T�C�

0

�

du�1 −
z

u2
� exp�−

M

T
� �1 + �2�u2

�1 + ��2 +
2z2

u2�1 + ��2�
� �1 + a2����S2�Mu2

2T


+ S2�Mu2

T

�2z/u2 − �1 − ���2

2�1 + ��2 �� . �B1�

After integration of Eq. �B1�, one obtains

P1
�1��z� =

P1�0�
Q��� + a2���Q0���

e�Mz/T��2�1−�+
2
1+�2�/�1 + ��2�

� �Q��� + a2����Q0��� +
Mz

T
Q1���

+
M2z2

T2 Q2���� , �B2�

where

Q��� = 16�1 + ��4�1 + �2�2�1 + �2 + 
2
1 + �2� , �B3�

Q0��� = 3�1 + ��4�2 + 6�2 + 6�4 + 2�6

+ 
2
1 + �2�1 + 6�2 + �4�� , �B4�

Q1��� = 2
2�1 + ��2�1 + �2�3/2�37 − 12� + 42�2

− 20�3 + 17�4� + 2�1 + ��2�1 + �2�

��54 − 16� + 84�2 − 32�3 + 54�4 − 16�5� ,

�B5�

Q2��� = 8�1 + �2��3 − 2� + 3�2���7 − 6� + 3�2��1 + �2�

+ 
2
1 + �2�5 − 4� + 5�2 − 2�3�� . �B6�

APPENDIX C: SECOND-COLLISION
VELOCITY-CORRELATION DISTRIBUTION

In one dimension when ��=1, the velocities of the tagged
particle and the bath particle are exchanged during the colli-
sion. This drastically simplifies the expression of the second-
collision velocity-collision distribution and the calculation
becomes tractable. Indeed, if ��=1, P2

�1��z� becomes

P2
�1��z� = C2� dv� du1� du2�u1 − v��u2 − u1�fB�u1�

� fB�u2�f�v���vu2 − z� , �C1�

where fB�u� denotes the bath velocity distribution and f�v�
the tagged particle velocity distribution.

We first integrate over the velocity of the bath particle 2,
namely, the velocity of the colliding particle at the second
collision. We drop the subscript of the velocity of the bath
particle for the collision 1, and P2

�1��z� reads

P2
�1��z� = C2� dv� du�u − v�� z

v2 − u� fB�u�fB� z

v2 f�v� .

�C2�

Let us introduce the function I�z ,v�:

I�z,v� =� du�u − v��z − uv�e−b2u2/2. �C3�

When z�v2, one has
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I�z,v� =
2v2

b2 e−b2z2/2v2
−

2z

b2 e−b2v2/2 +

2��v��1 + b2z�

b3

+

2�v�1 + b2z�

b3 �erf� bz

2v

 − erf� bv

2

� �C4�

and when z
v2

I�z,v� = −
2v2

b2 e−b2z2/2v2
+

2z

b2 e−b2v2/2 −

2��v��1 + b2z�

b3

−

2�v�1 + b2z�

b3 �erf� bz

2v

 − erf� bv

2

� . �C5�

Inserting Eq. �C4� in Eq. �C1� and integrating out the first

two terms of the integrand leads to Eq. �54�. For z
0, by
using the property of I�v ,z� �Eqs. �C4� and �C5��, for z
0,
P2

�1��z� is expressed as

P2
�1��z� = C2��


z

�

dv − �
0


z

dv� e−a2v2/2−b2z2/2v2

v2 I�v,z�� .

�C6�

Integrating out the first terms of the right-hand side of Eq.
�C6� leads to Eq. �55�.
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